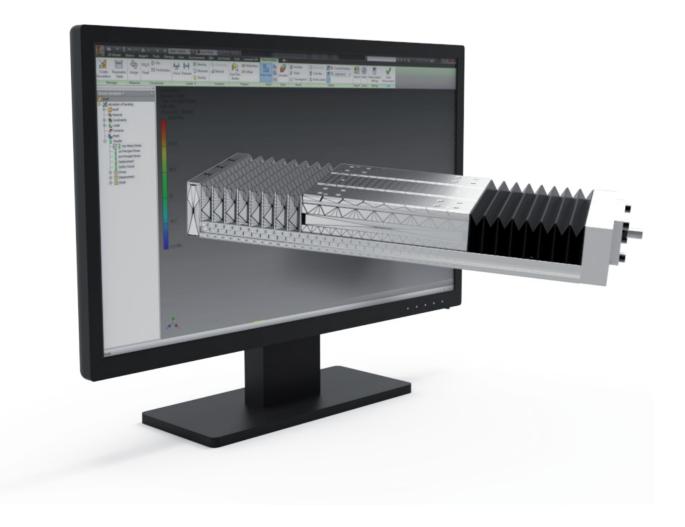


IMPEX TECNICHE LINEARI SRL Via Jacopone da Todi,14 IT-06089 Torgiano PG

T.: +39 075 98 80 100 F.: +39 075 98 80 103

info@movitec.it



movitec® Manufacturing moving solutions

100% MADE IN ITALY

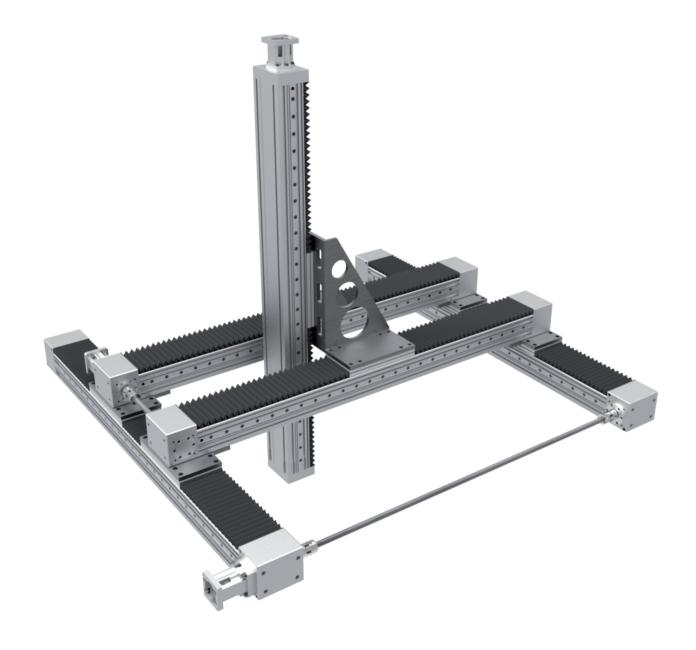
Eine organisierte und strukturierte Produktion

Die Firma Impex Techniche Lineari, wurde 1986 für den Verkauf von mechanischen Komponenten gegründet und hat als erstes Unternehmen in Italien, Lineartische und Linearsysteme entwickelt, identifiziert mit der Marke Movitec®.

Unser tägliches Engagement ist es, ein Partner für unsere Kunden zu sein. Wir bieten unsere dreißigjährige Erfahrung und unser technisches Know-how mit 3D-Design seit anfangs 2003. Wir fertigen auch Maschinen und Teile, mit Montage, Prüfung und Realisierung von Prototypen.

Dank der Modularität der Produkte und der hohen Flexibilität, garantieren wir kurzfristige Lieferungen mit individuellen Produktanpassungen.

Hohe Effizienz und Zuverlässigkeit


Unsere Produkte sind das Ergebnis

langjähriger Entwicklung und technologischer Forschung, um eine maximale Effizienz und Zuverlässigkeit aller **Moviec** Produktfamilien zu garantieren. Der geringe Wiederstand der **Moviec** Linearsysteme ermöglicht die Verwendung von verschiedenen Motortypen auch im Hochgeschwindigkeitsbetrieb

Movitec® bezeichnet heute fünf große Produktfamilien: Lineartische, elektromechanisch und pneumatisch, Lineartische "Piccola", für äußerst kompakte Applikationen, "Bi-Rail" Linearmodule und Kompaktachsen.

Die Anpassungsfähigkeit der Produkte, mit einer breiten Auswahl an Antrieben, Führungen, Abdeckungen, Motorisierungen und Zubehör, ermöglicht, das Einbauen in neue oder in bestehende Maschinen.

Die Zuverlässigkeit der Produkte wird auch garantiert durch lange Lebensdauer hinsichtlich der Laufleistung.

HÖCHSTE QUALITÄT UND FLEXIBILITÄT da Details den Unterschied machen Die Gesamtqualität ist das Ergebnis von

- ✓ Qualität im Design, funktionales Design um die Modularität aller Produkte zu garantieren;
- ✓ **Qualität der Werkstoffe**, sei es Vollmaterial oder Extrusion immer in Edelmetall-Legierungen;
- ✓ Qualität aller Flächenbearbeitungen, mit sehr engen Toleranzen bearbeitet;
- ✓ **Qualität der Fertigung**, mit Qualitätskontrolle der einzelnen Bauteile;
- ✓ **Qualität in der Montage**, mit Prüfung und Test von jedem einzelnen Produkt;
- ✓ Qualität aller zugekauften Komponente, die mit grösster Sorgfalt gewählt werden.

MAXIMALE MODULARITÄT UND KURZFRISTIGE LIEFERUNGEN

Dank dem funktionalen Design und einer sorgfältigen Produktionsplanung, können Sonderlösungen in sehr kurzer Zeit realisiert werden mit einer sehr großen Auswahl an Konfigurationen durch die Wahl von:

Antrieb	KGT gerollt oder geschliffen Satellitenrollenspindel Steilgewindespindel	Trapezspindel Zahnriemen Pneumatik Zylinder
Führungen	Linearschienen mit Kugelumlaufführungen Linearschienen mit langen Kugelumlaufführungen Linearschienen mit Hochlast-Kugelumlaufführungen Linearschienen mit Rollenführungen	Gleitführungen Kreutzrollenführungen
Werkstoffe	Aluminium 6060 T6/6082 Aluminium extrudiert 6063 T6	Stahl C45 Edelstahl
Abdeckungen	Faltenbalg Metall	Faltenbalg mit Edelstahllamellen Teleskopabdeckungen
Optionen	Zusätzliche Gewindebohrungen Schmierungssytem Endschalter Montage- / Klemmsysteme Motoranbau direkt Motoranbau indirekt	Sycherheitssysteme Dämpfer Optische oder magnetische Messysteme Montageplatten Squadre di montaggio
Motoren	Schrittmotoren AC/DC Servomotoren	Servomotoren Bürstenlos

Einsatz der MOVITEC® Produkte

Lineartische und Linearsysteme werden in verschiedene Industrie-Branchen verwendet.

Industrie	-Brancher
-----------	-----------

Automobil

Verpackung

Handhabung

Laserschneiden

Wasserstrahlschneiden

Markiersysteme

Vision-Systeme

Mikromechanik

Präzisionsmontage

Halbleiter

Elektronik

Sondermaschinen

Automatisierung

Roboter

Montage

Spanmaschinen

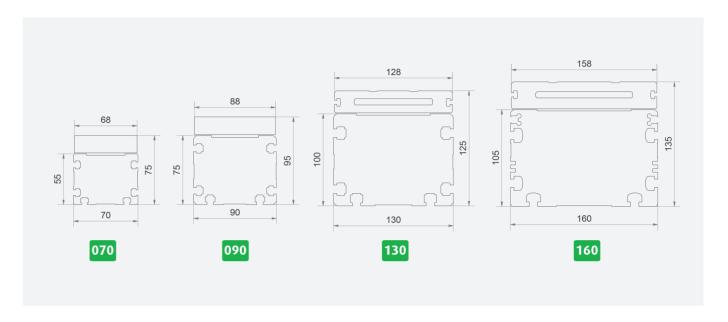

Bohrmaschinen

Industrial machines

Robotics

INHALTVERZEICHNIS

Produktematrix 8
Abmessungen 9
Antriebe9
Führungen, Schlittenlänge, Verfahrgenauigkeit10
Bestellsystem11
MV Typ12
Baugrösse 07014
Baugrösse 09016
Baugrösse 13018
Baugrösse 16020
MH Typ22
Baugrösse 13024
Baugrösse 16026
Optionen


Berechnungsgrundlagen30	•
Wirkungsgrad36	
Erforderliche Antriebs- und Haltemoment	
Statische und dynamische Tragzahl	6
Nominelle Lebensdauer	
Kritische Drehzahl der Spindel37	7
Drehzahlkennwert der Mutter37	7
Maximalbelastung der Spindel38	8
Maximalbelastung der Spindel mit POM-C Mutter38	8
Knickkraft38	8
Vorspannung38	8
Schmierung38	
Statischer Sicherheitsfaktor39	9
Dynamische Tragzahl39	9
Nominelle Lebensdauer39	
Lebensdauer in Stunden40	0
Werkstoffe40	0
Abdeckungen4	1
Technische Daten für gerollte Spindeln4	

Technischer Fragebogen	42
Montagemöglichkeiten	44
Sonderlösungen	46
Spezialprojekte	48
Alle Moviter-Produkte	5

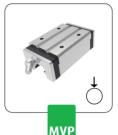
Produktematrix

Bi-Rail Linearmodule		MVP	MVL	MVR	MHP	MXP
070	Profilbreite 70 mm	•	_	_	_	•
Baugrösse 090	Profilbreite 90 mm	•	_	_	_	•
130	Profilbreite 130 mm	•	•	•	•	•
160	Profilbreite 160 mm	•	•	•	•	•
v	KGT gerollt / geschliffen	•	•	•	•	_
Antrieb	Steilgewindespindel	•	•	_	_	_
H	KGT für erhöhte Belastung	_	_	_	•	_
X	OHNE Antrieb	_	_	_	_	•
P	Kugelführungen	•	_	_	•	•
Führungen	Lange Kugelführungen	•	•	_	_	_
R	Rollenführungen		_	•	_	_
P	Standard	•	•	•	•	•
Schlitten	Lang	•	•	•	•	•
D	Doppel Schlitten	•	•	•	•	•
Werkstoffe	Aluminium extrudiert und anodisiert	•	•	•	•	•
Abdeckung	Faltenbalg	•	•	•	•	•
Abdeckding	OHNE Abdeckung	•	•	•	•	•
Optionen	Zusätzliche Gewindebohrungen	•	•	•	•	•
	Endenbearbeitungen auf Spindeln Schmiersysteme	•	•	•	•	•
	Endschalter	•	•	•	•	•
	Montage / Klemmsysteme Motoranbau direkt	•	•	•	•	•
	Motoranbau indirekt	•	•	•	•	•
	Sicherheitssysteme	•	•	•	•	•
	Optische oder magnetische Messysteme Montagemöglichkeiten	•	•	•	•	•
	Motoren	•	•	•	•	•
	Steuerungen	•	•	•	•	•

Abmessungen

Antriebe

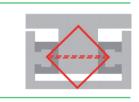
		Ва	ugrössen	
	070	090	130	160
GT gerollt / geschliffen				
	12x2 12x4	16x5 16x10	20x5 20x10	25x5 25x10
MV Ø x p [mm]	12x5	16x16	20x10 20x20	25x10
WV 6 x b [mm]	12x10 12,7x25,4	16x50	20x50	25x50
teilgewindespindel	12,45	1 4 4 0		
	12x15 12x25	14x8 14x18		
MV Ø x p [mm]	13x20	14x30		
υx ρ [iiiiii]	13x70	15x20 15x80		
		1000		
GT für erhöhte Belastungen			25x5	32x5
			25x10	32x10
MH Ø x p [mm]			25x20	32x20
			25x50	32x32


Spindel-Genauigkeitsklasse **ISO 7**; Auf Anfrage auch Spindeln in **ISO 5** oder **ISO 3** erhältlich.

Führungen

In Bi-Rail Linearmodule können verschiedene Führungen montiert werden:

- 2 Linearführungen und 4 Kugelumlaufschlitten für MVP Typ;
- 2 Linearführungen und 4 lange Kugelumlaufschlitten für MVL Typ;
- 2 Linearführungen und 4 Kugelumlaufrollen für MVR Typ.

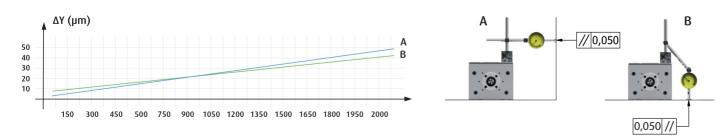


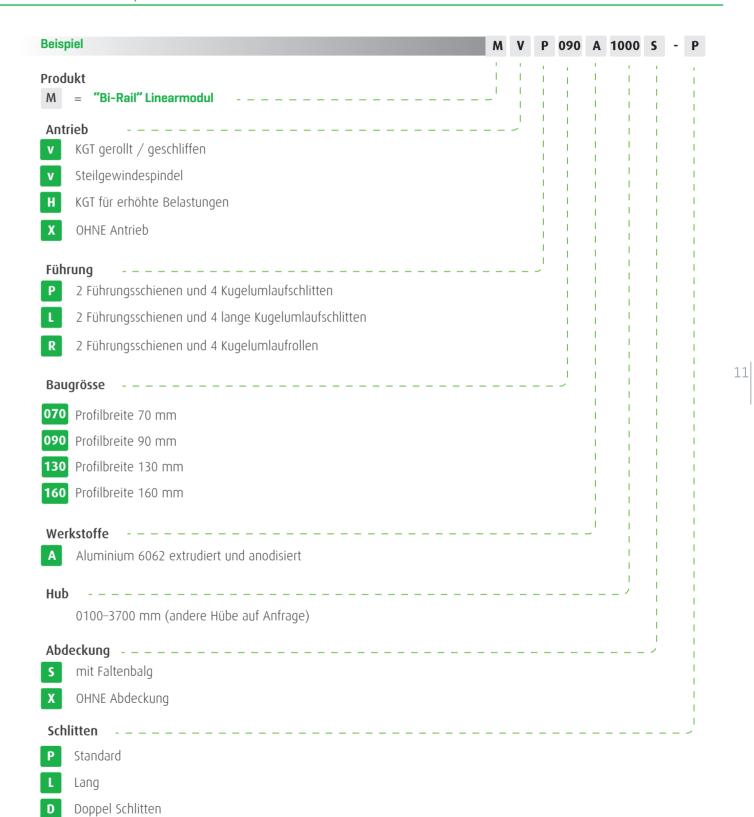
Baugrösse	MV 070	MV 090	MV/MH 130	MV/MH 160
Linearführung Grösse	G9	G12	G15	G20

Dank der zwei seitlich im Profil montierte Linearschienen, formen die Kraftlinien zwei aufeinanderliegende Dreiecke. Bi-Rail Linearmodule sind daher ideal als Portalachsen oder als Basisachse da diese sehr hohe Belastungen tragen.

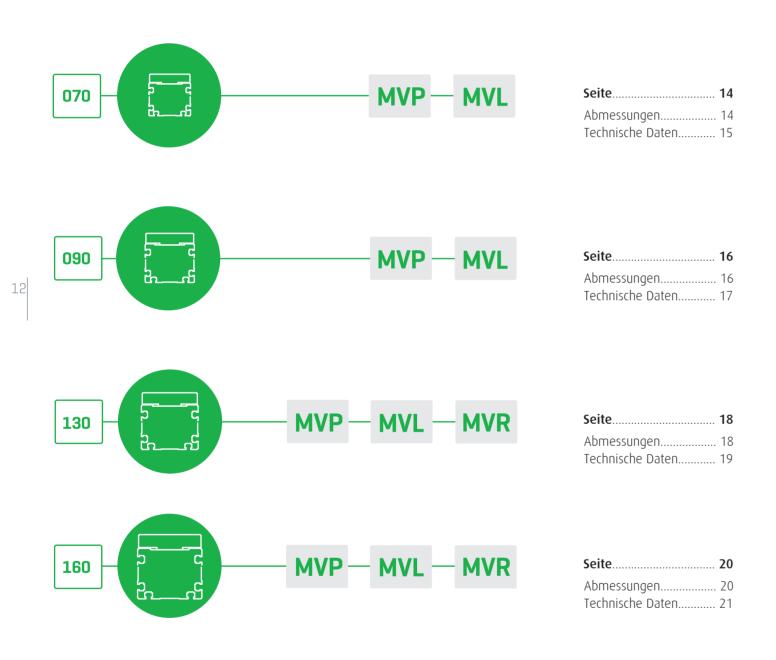
Schlittenlänge

Drei verschiedene Schlittenlängen stehen zur Auswahl zur Verfügung, je nach Applikationsbedarf:


- Standard Schlitten **P**;
- langer Schlitten **L**;
- doppel Schlitten **D**.



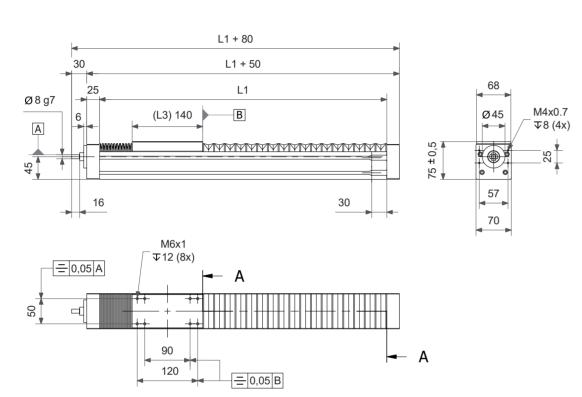
Verfahrgenauigkeit

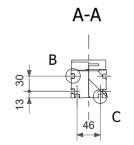

Um die hohe Genauigkeit der Produktkontaktflächen einzuhalten, empfiehlt es sich, die angegebenen Planheitswerte im Katalog zu beachten.

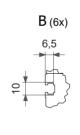
Bestellsystem

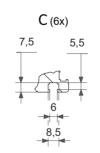
MV - Typ

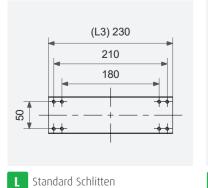
mit Spindelantrieb

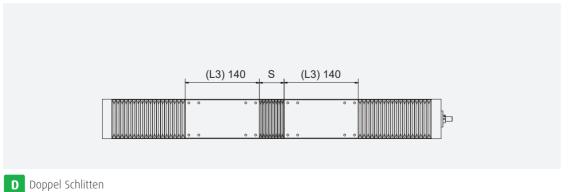


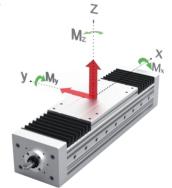

"Bi-Rail" Linearmodule


MV mit Spindelantrieb und Faltenbalgabdeckung


MV 070 mit Spindelantrieb und Faltenbalg


		Hub					
		Р	L				
		Standard Schlitten [mm]	Langer Schlitten [mm]				
	240	50	-				
	310	50 100	50				
	370	50 100 150 200	50 100 150 200 250 300 350 400 450 500 550 600 650 750				
	440	200	150				
E	500	250	200				
Profillänge L1 [mm]	570	300	250				
11	640	350	300				
inge	700	400	350				
fillä	770	400 450 500 550 600	400				
Pro	840	500	450				
	910	550	500				
	970	600	550				
	1030	650	600				
	1100	700	650				
	1240	800	750				





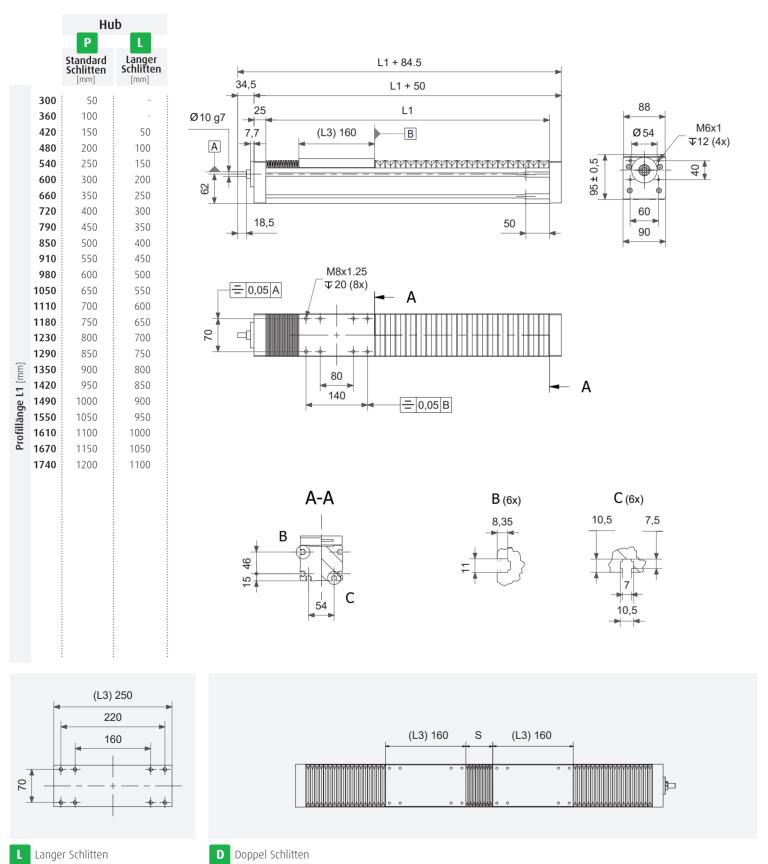
MV 070 Antrieb- und Führungssystem

	d ₀	Steigung	Positionier- genauigkeit	Wiederhil- genauigkeit	Axial-Spiel Mutter	Tragza C _{a dyn.}	hlen * C _{0 stat.}
	Ø[mm]	[mm]	$[\mu m/300 \text{ mm}]$	[µm/300 mm]	[mm]	1]	1]
		2				2000	4000
		3				5000	11000
KGT gerollt	12	4	52	±15	0,03	5500	11000
_		5	32	±13	0,05	6600	12000
		10				2800	3100
	12,7	25,4				8000	15000
		15				Famm**	1400
	12,8	25				Famm**	1500
Steilgewinde- spindel		35,6	100	±50	0,05-0,1	Famm**	1600
		20				Famm**	1300
	13	13 70				Famm**	1750
Rundgewindespindel	12	4	100	±50	0,05-0,1	Famm**	1200

- KGT's können auch in Präzisionsklasse **ISO 5, ISO 3** oder auch geschliffen geliefert werden. - Reduziertes Axialspiel Spindel < 0,01mm oder Nullspiel auf Spindel **ISO 5** möglich. - Vorgespannte Einzelmutter auf 3% des C_a Wertes für Spindel in **ISO 5.**

- Famm** Berechnungen auf Seite 38

		Linear- führungen	Zulässige Tragzahlen [N]			Zulässige Tragzahlen [N] Zulässige			ässige Momentenbelastungen [Nm]			
		Grösse		y	F	z	M _X		M _Y		M	z
			dyn.	stat.	dyn.	stat.	dyn.	stat.	dyn.	stat.	dyn.	stat.
Standard Schlitten	MVP		3925	6238	6280	9980	100	160	490	778	367	584
P	MVL	G9	5338	9700	8540	15520	137	248	666	1211	500	908
Langer Schlitten	MVP	d)	3925	6238	6280	9980	100	160	785	1248	589	936
L	MVL		5338	9700	8540	15520	137	248	1068	1940	801	1455

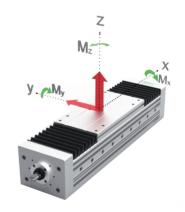

Tabellenwerte wurden mit Faktor 1 kalkuliert. Diesen Faktor je nach Applikation anpassen, siehe Tabelle auf Seite 39.

Gesamtgewicht Linearmodul:

mtot=1,16+0,001 · k · L1+mc

mc=Standard Schlitten=0,65 kg langer Schlitten=0,85 kg

MV 090 mit Spindelantrieb und Faltenbalg



MV 090 Antrieb- und Führungssystem

	d_0	Steigung	Positionier- genauigkeit	Wiederhol- genauigkeit	Azialspiel Mutter	Tragzał C _{a dyn.}	nlen * C _{o stat.}
	Ø [mm]	[mm]	[µm/300 mm]	[µm/300 mm]	[mm]	[N]	
		5				9700	22000
-	4.2	10	50	.de	0.03	17000	25000
KGT gerollt	16	16	52	±15	0,03	9150	18750
		50	50		4800	11000	
	14	30				Famm**	1750
Steilgewinde- spindel	15	20	100	±50	0,05-0,1	Famm**	1600
	15	80		Famm**	2000		
	18	100				Famm**	2500
Rundgewinde-	14	4	100	. 50	0,05-0,1	Famm**	3200
spindel	16	16 5	±50	0,03-0,1	Famm**	5000	

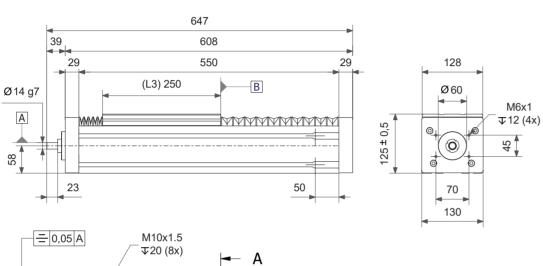
- KGT's können auch in Präzisionsklasse ISO 5, ISO 3 oder auch geschliffen geliefert werden.
- Reduziertes Axialspiel Spindel < 0,01mm oder Nullspiel auf Spindel ISO 5 möglich.
- Vorgespannte Einzelmutter auf 3% des ${\bf C_a}$ Wertes für Spindel in **ISO 5.**

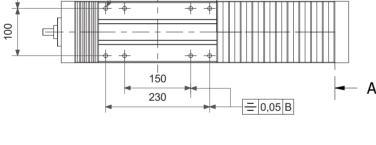
- Famm** Berechnungen auf Seite 38

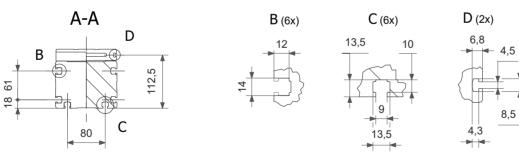
		Linear- führungen		Zulässige Tragzahlen [N]				Zulässige Momentenbelastungen [Nm]					
		Grösse	F	y	F _z			Mx		My		M	z
			dyn.	stat.	dyn.	stat.		dyn.	stat.	dyn.	stat.	dyn.	stat.
Standard			9525	13975	15240	22360		389	570	938	1442	737	1082
Standard Schlitten													
Р			8100	14075	12960	22520		330	574	836	1453	627	1089
	MVP	G12											
Langer	MVP		9525	13975	15240	22360		389	570	1669	2448	1252	1836
Langer Schlitten													
	MVL		8100	14075	12960	22520		330	574	1419	2466	1064	1849
L													

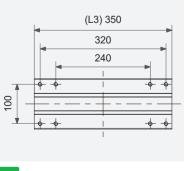
Tabellenwerte wurden mit Faktor 1 kalkuliert. Diesen Faktor je nach Applikation anpassen, siehe Tabelle auf Seite 39.

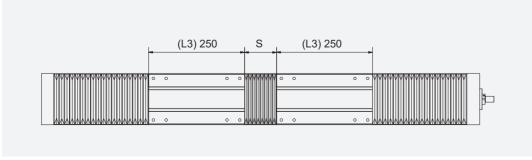
Gesamtgewicht Linearmodul:

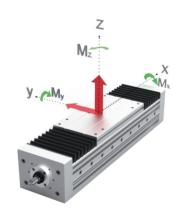

mtot=1,95+0,001 · k · L1+mc


mc=Standard Schlitten =1,7 kg langer Schlitten =2,45 kg **k**=11,5




MV 130 mit Spindelantrieb und Faltenbalg




L Langer Schlitten

D Doppel Schlitten

MV 130 Antrieb- und Führungssystem

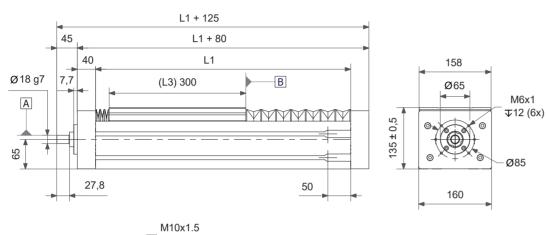
	d_0	Steigung	Positionier- genauigkeit	Wiederhol- genauigkeit	Axialspiel Mutter	Trag: C _{a dyn.}	zahlen * C _{0 stat.}
	Ø [mm]	[mm]	$[\mu m/300 \text{ mm}]$	[µm/300 mm]	[mm]		[N]
		5				10800	25000
VCT accella	20	10	52	.45	0.02	21000	51000
KGT gerollt	20	20	52	±15	0,03	17900	44600
		50				13000	24600

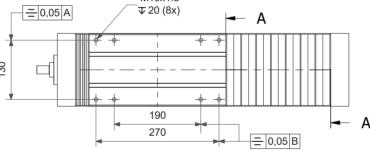
- KGT's können auch in Präzisionsklasse **ISO 5, ISO 3** oder auch geschliffen geliefert werden. Reduziertes Axialspiel Spindel < 0,01mm oder Nullspiel auf Spindel **ISO 5** möglich.
- Vorgespannte Einzelmutter auf 3% des C Wertes für Spindel in **ISO 5**.

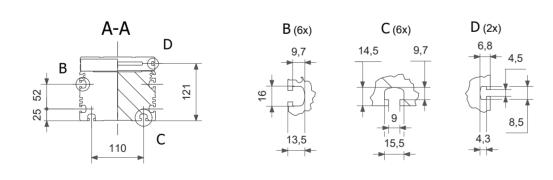
		Linear- führungen		Zulässige Tragzahlen [N]				Zulässige Momentenbelastbarkeit [Nm]					
		Grösse	F,			z		M _x	M		M	Z	
			dyn.	stat.	dyn.	stat.	dyn	stat.	dyn.	stat.	dyn.	stat.	
Standard	MVP		24750	43750	39600	70000	126	7 2240	3643	6440	2732	4830	
Schlitten	MVL		33500	67250	53600	107600	171	3443	4931	9899	3698	7424	
	MVR		25750	68750	41200	110000	1318	3520	5644	15070	4233	11303	
Langer Schlitten	MVP	G15	24750	43750	39600	70000	126	7 2240	5425	9590	4069	7193	
Schitten	MVL		33500	67250	53600	107600	171	3443	7343	14741	5507	11056	
	MVR		25750	68750	41200	110000	131	3520	5644	15070	4233	11303	

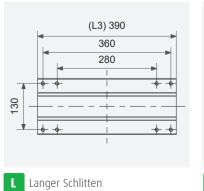
Tabellenwerte wurden mit Faktor 1 kalkuliert. Diesen Faktor je nach Applikation anpassen, siehe Tabelle auf Seite 39.

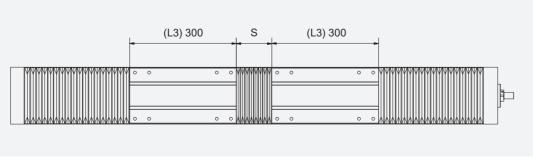
Gesamtgewicht:

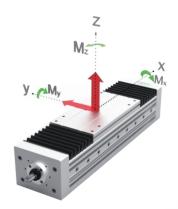

mtot=1,3+0,001 · k · L1+mc


mc= Standard Schlitten=4,2 kg langer Schlitten=5,4 kg


k=21


MV 160 mit Spindelantrieb und Faltenbalg


Hub Standard Schlitten **□** 2760



D Doppel Schlitten

MV 160 Antrieb- und Führungssystem

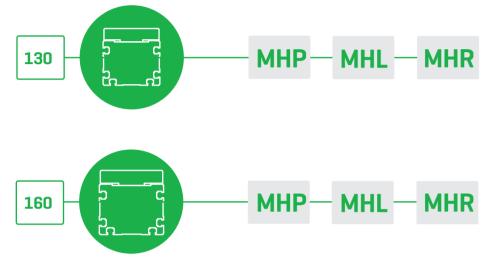
	d_0	Steigung	Positionier- genauigkeit	Wiederhol- genauigkeit	Axialspiel Mutter	Tragzahlı C_{a dyn.}	en * C₀ stat.
	Ø[mm]	[mm]	[µm/300 mm]	[µm/300 mm]	[mm]	[N]	
		5				14000	35000
		10				25200	45400
KGT gerollt	25	30	52	±15	0,03	6560	14600
		25				16700	29000
		50				15400	31700

- KGT's können auch in Präzisionsklasse ISO 5, ISO 3 oder auch geschliffen geliefert werden.
- Reduziertes Axialspiel Spindel < 0,01mm oder Nullspiel auf Spindel **ISO 5** möglich.
- Vorgespannte Einzelmutter auf 3% des C_a Wertes für Spindel in **ISO 5.**

		Linear- schienen		Zulässige Tragzahlen [N]				Zulässige Momentenbelastbarkeiten [Nm]					
		Grösse	F	y	F	z		M _X	N	Υ	M	Z	
			dyn.	stat.	dyn.	stat.	-	yn. sta	. dyn.	stat.	dyn.	stat.	
Standard Schlitten	MVP		42750	75000	68400	120000	2	223 390	0 7319	12840	5489	9630	
P	MVL	G 20	51000	96250	81600	154000	2	552 500	5 8731	16478	6548	12359	
	MVR		48000	131250	76800	210000	24	96 682	5 8218	22470	6163	16853	
Langer Schlitten	MVP		42750	75000	68400	120000	2	223 390	00 10397	18240	7798	13680	
L	MVL		51000	96250	81600	154000	2	552 500	12403	23408	9302	17556	
	MVR		48000	131250	76800	210000	24	96 682	25 11674	31920	8755	23940	

Tabellenwerte wurden mit Faktor 1 kalkuliert. Diesen Faktor je nach Applikation anpassen, siehe Tabelle auf Seite 39.

Gesamtgewicht Linearmodul:

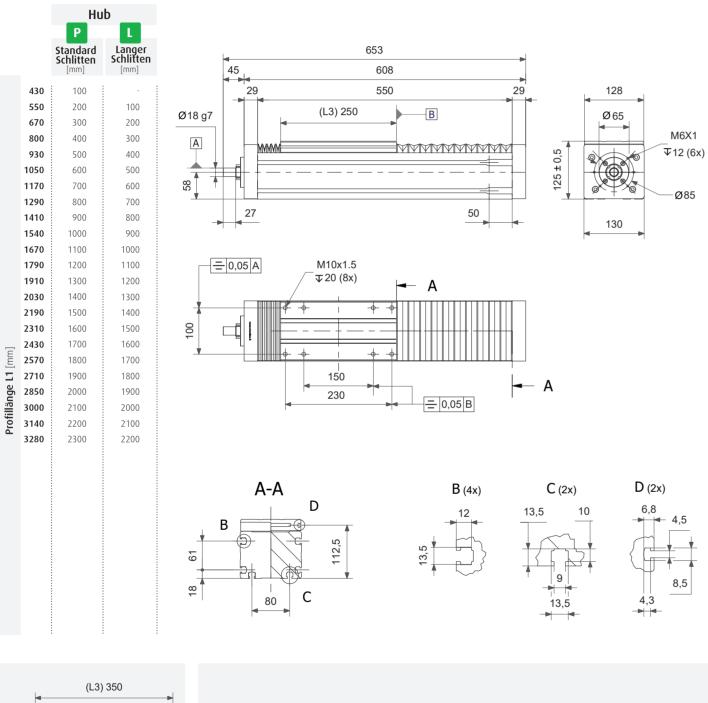

mtot=4,5+0,001 · k · L1+mc

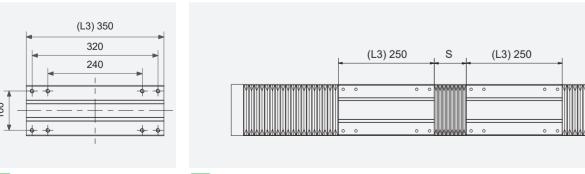
mc=Standard Schlitten=7,1 kg langer Schlitten=8 kg **k**=27

TIPO - MH

mit Spindelantrieb für erhöhte Belastungen

Seite24	
Abmessungen 24	
Techniache Daten 25)

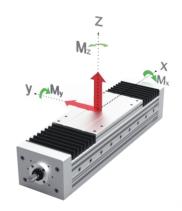




"Bi-Rail" Linearmodule

MH Spindelantrieb für erhöhte Belastungen mit Faltenbalgabdeckung

MH130 Spindelantrieb für erhöhte Belastung



D Doppel Schlitten

MH130 Antrieb- und Führungssystem

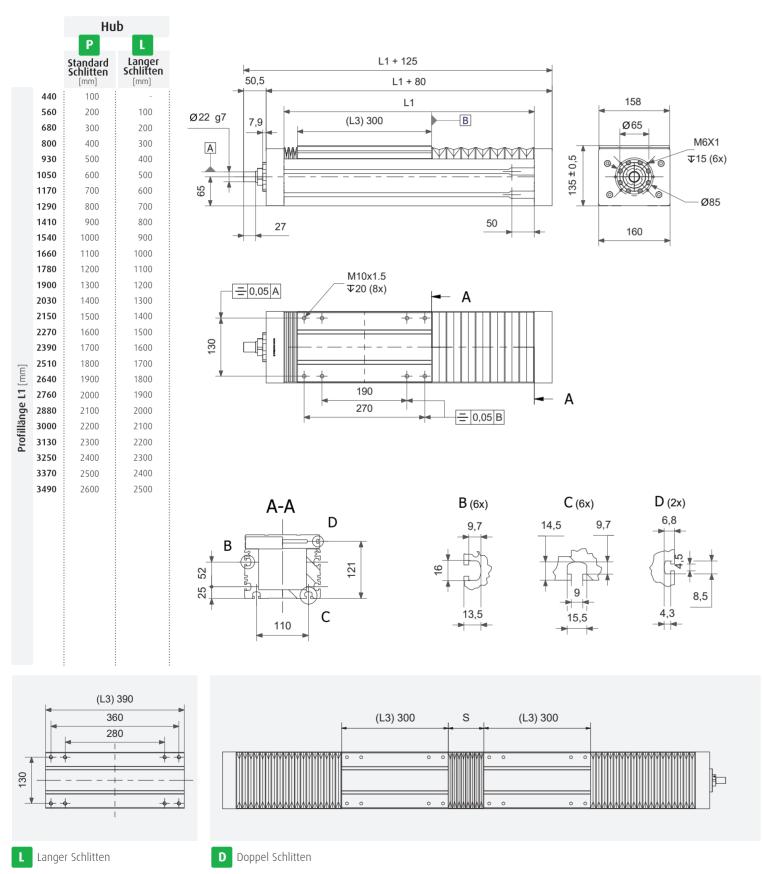
	d_0	Steigung	Positionier- genauigkeit	Wiederhol- genauigkeit	Axialspiel Mutter	Tragzahle C _{a dyn} .	C _{o stat.}
	Ø [mm]	[mm]	$[\mu m/300 \text{ mm}]$	[µm/300 mm]	[mm]	[N]	
		5				14000	35000
		10				25200	45400
KGT gerollt	25	20	52	±15	0,03	6560	14600
		25				16700	29000
		50				15400	31700

- · KGT's können auch in Präzisionsklasse ISO 5, ISO 3 oder auch geschliffen geliefert werden.
- Reduziertes Axialspiel Spindel < 0,01mm oder Nullspiel auf Spindel **ISO 5** möglich. Vorgespannte Einzelmutter auf 3% des C_a Wertes für Spindel in **ISO 5**.

	Linear- führungen			Zulässige Tragzahlen [N]				Zulässige Momentenbelastungen[Nm]					
		Grösse	F,		F	Z		M _x	M		M	z	
			dyn.	stat.	dyn.	stat.	dyn	. stat.	dyn.	stat.	dyn.	stat.	
Standard	МНР		24750	43750	39600	70000	126	7 2240	3643	6440	2732	4830	
Schlitten	MHL		33500	67250	53600	107600	171	3443	4931	9899	3698	7424	
	MHR		25750	68750	41200	110000	131	3520	5644	15070	4233	11303	
		G15											
Langer Schlitten	MHP		24750	43750	39600	70000	126	7 2240	5425	9590	4069	7193	
Schliften	MHL		33500	67250	53600	107600	171	5 3443	7343	14741	5507	11056	
	MHR		25750	68750	41200	110000	131	3520	5644	15070	4233	11303	

Tabellenwerte wurden mit Faktor 1 kalkuliert. Diesen Faktor je nach Applikation anpassen, siehe Tabelle auf Seite 39.

Gesamtgewicht Linearmodul:

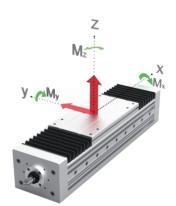

mtot=1,3+0,001 · k · L1+mc

mc=Standardschlitten=4,2 kg langer Schlitten=5,4 kg

k=21

L Langer Schlitten

MH 160 Spindelantrieb für erhöhte Belastung



MH 160 Antrieb- und Führungssystem

	d_0	Steigung	Positionier- genauigkeit	Wiederhol- genauigkeit	Axialspiel Mutter	Tragzal C _{a dyn.}	hlen C _{o stat.}
	Ø [mm]	[mm]	$[\mu m/300 \text{ mm}]$	[µm/300 mm]	[mm]	[N]	
		5				19000	54000
WCT and like	22	10		.de	0.00	19900	55100
KGT gerollt	32	20	52	±15	0,03	23800	51500
		32				25700	76200

KGT's können auch in Präzisionsklasse ISO 5, ISO 3 oder auch geschliffen geliefert werden.

Reduziertes Axialspiel Spindel < 0,01mm oder Nullspiel auf Spindel **ISO 5** möglich. - Vorgespannte Einzelmutter auf 3% des C_{a.} Wertes für Spindel in **ISO 5**.

	Linear- führungen				Zulässige Tragzahlen [N]				Zulässige Momentenbelastungen [Nm]					
		Grösse	F	y		z		Mx		My		M	Z	
			dyn.	stat.	dyn.	stat.		dyn.	stat.	dyn.	stat.	dyn.	stat.	
Standard Schlitten	МНР		42750	75000	68400	120000		2223	3900	7319	12840	5489	9630	
P	MHL		51000	96250	81600	154000		2652	5005	8731	16478	6548	12359	
	MHR		48000	131250	76800	210000		2496	6825	8218	22470	6163	16853	
Langer Schlitten	МНР	G20	42750	75000	68400	120000		2223	3900	10397	18240	7798	13680	
Schlitten	MHL		51000	96250	81600	154000		2652	5005	12403	23408	9302	17556	
	MHR		48000	131250	76800	210000		2496	6825	11674	31920	8755	23940	

Tabellenwerte wurden mit Faktor 1 kalkuliert. Diesen Faktor je nach Applikation anpassen, siehe Tabelle auf Seite 39.

Gesamtgewicht Linearmodul:

mtot=4,5+0,001 · k · L1+mc

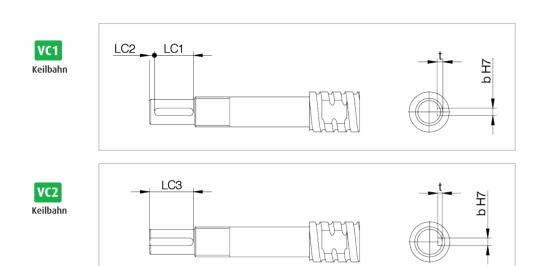
mc=Standardschlitten=7,1 kg langer Schlitten=8 kg

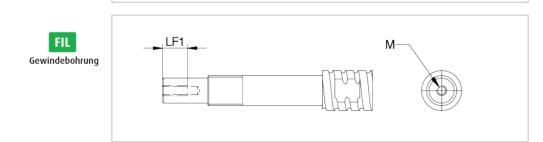
k=27

"Bi-Rail" Linearmodule OPTIONEN

28

"Bi-Rail" Linearmodule

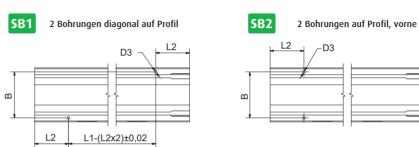

OPTIONEN

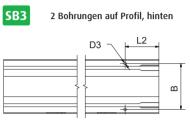

Endenbearbeitungen der Gewindetriebe	30
Positionierbohrungen in Profil und Schlitten	31
Schmiersystem	31
Endschalter	32
Klemm- / Montagesysteme	33
Motoranbau direkt mit Kupplung	34
Motoranbau indirekt mittels Zahnriemengetriebe	34
Sicherheitssysteme	35

"Bi-Rail" Linearmodule **OPTIONEN**

Endenbearbeitungen der Gewindetriebe

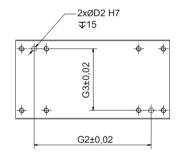
Standardmässig werden die Gewindetriebe nicht bearbeitet. Auf Anfragen können verschiedene Bearbeitungen realisiert werden.




			Keilbah	n (VC1)		Ke	eilbahn (V	Gewinde- bohrung (FIL)		
Baugrösse	Ø Spindel	LC1	LC2	t	b	LC3	t	b	LF1	m
	[mm]		[m	nm]				[mm]		
MV /MU 120	20	16,5	2	1,8	5	18,5	3	5	12	M5
MV/MH 130	25	21,5	3	1,8	6	24,5	3,5	6	12	M6
/ 4.0	25	21,5	3	1,8	6	24,5	3,5	6	12	M6
MV/MH 160	32	25,5	1	3	5	26,5	3,5	6	12	M8

Positionierbohrungen in Profil und Schlitten

Zusätzliche Positionierbohrungen auf Profil und Schlitten werden auf Anfrage gefertigt.



		Profil				Sc	hlitten	
Тур	Baugrösse	B±0,02	D3 H7	L2±0,02	G3	D2 H7	G2±0,02 Standard	G2±0,02 Lang
			[mm]		[m	m]	[m	m]
AAV	070	29	5⊽8	100	50	6	105	195
MV	090	72	6∓8	100	70	8	110	200
AAV/AAII	130	100	6⊽10	100	100	8	190	280
MV/MH	160	136	8⊽15	100	130	8	230	320

31

Schmierung

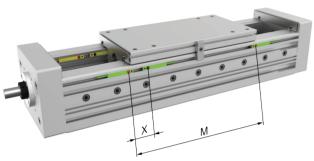
Schmierbohrungen Grösse1,8" sind standardmässig auf der linken Seite des Schlittens. Auf Anfrage sind diese auch auf der rechten Seite erhältlich.

Eine Schmierbohrung für KGT

Fünf Schmierbohrungen: eine für KGT, vier für Kugelumlaufschlitten

Ohne Schnierbohrungen jedoch mit selbstschmierenden KGT und Kugelumlaufschlitten

Bestell- code	Beschreibung
LKD	1 Schmierbohrung für KGT + 4 für Kugelumlaufschlitten,rechts
LKS	1 Schmierbohrung für KGT + 4 für Kugelumlaufschlitten, links
L1D	1 Schmierbohrung für KGT, rechts
L1S	1 Schmierbohrung für KGT, links


Bestell- code	Beschreibung
L5D	5 Schmierbohrungen, rechts
L5S	5 Schmierbohrungen, links
KK0	KGT und Kugelumlaufschlitten selbstschmierend
KK0	KGT und Kugelumlaufschlitten selbstschmierend

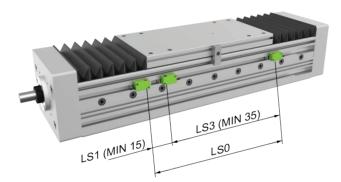
"Bi-Rail" Linearmodule **OPTIONEN**

Endschalter

An alle Bi-Rail Linearmodule können Endschalter montieren werden, intern oder extern am Profil, rechte (DX) oder linke (SX) Seite, ohne Stecker.

Induktive Endschalter

Beispiel: FA2ZZ/FA4


• : Induktive Endschalter PNP-NC

• : Induktive Endschalter PNP-NO

M : Hub

X: minimum 15mm

Endschalterjustierung +/- 10mm

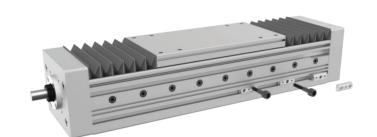
- •: Induktive Endschalter PNP-NC
- •: Induktive Endschalter PNP-NO

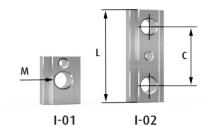
LSO: Hub

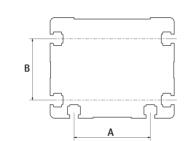
LS1: minimum 15mm

LS3 = LS0-LS1

Endschalterjustierung +/- 10mm

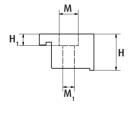

Induktive Endschalter Ohne Stecker Bestellcode für Endschalter auf linke Seite (SX) FA4 2x PNP-NC (Notschalter) FA2 1x PNP-NO (Referenzpunktschalter, Motor-seitig) FB4 FB2 2x PNP-NC (Notschalter) 1x PNP-NO (Referenzpunktschalter, Motor-gegenseitig) FC2 FC4 2x PNP-NC (Notschalter) FD4 FD2 1x PNP-NO (Referenzpunktschalter)


Mechanische Endschalter

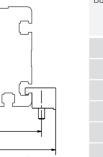

Auf Anfrage können auch mechanische Endschalter montiert werden **FE**

Montage- / Klemmsysteme

Nutensteine in zwei Grössen können in Nutenprofile **A** und **B** montiert werden, um Zubehör oder Kabelketten zu befestigen.

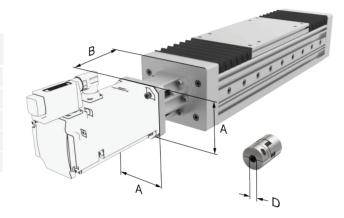


Baugrösse	Bestellcode	Α	В	L	M	С
		[m	m]	[mm]		[mm]
070	170-01	4.6	20	12	1 x M5	-
070	170-02	46	30	25	1 x M5	-
090	190-01	54	46	15	1 x M6	-
090	190-02	54	40	35	1 x M6	-
130	I130-01	80	61	20	1 x M8	-
130	I130-02	80	ΟI	40	2 x M8	25
160	I160-01	110	52	20	1 x M8	-
160	1160-02	110	JZ	40	2 v M8	25



ST-02

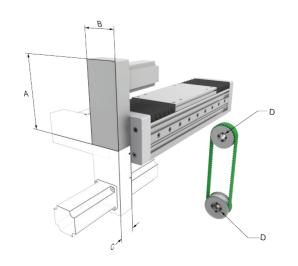
ST-01


Baugrösse	Bestellcode	Α	В	L	М	M1	Н	H1	С
		[m	nm]	[mm]		[n	nm]		[mm]
070	ST70-02	84	102	55	9	5,5	14	5,5	40
090	ST90-02	115	140	90	14	8,5	15	8,5	70
130	ST130-01	155	197	24	14	8,5	26,5	8,5	-
130	ST130-02	155	192	124	14	8,5	26,5	8,5	100
160	ST160-01	105	222	24	14	8,5	26,5	8,5	-
160	ST160-02	185	222	124	14	8,5	26,5	8,5	100

"Bi-Rail" Linearmodule **OPTIONEN**

Motoranbau direkt mit Kupplung

Zweiteiliger Aluminium Motoranbau bestehend aus Motorglocke und Motorflansch, dieser nach Motortyp angepasst. Auf Anfrage werden auch Sonderteile realisiert.


Тур	Bau- P grösse	Α	В	Max. Dreh- moment	D min/max
		[m	m]	[Nm]	Ø [mm]
MV	070	60 - 90	45+LM	12,5	6/15
IVIV	090	70 - 100	47,5+LM	12,5	6/15
MV/MH	130	80 - 110	55+LM	17	8/22
MIV/MIП	160	80 - 120	61+LM	17	8/22

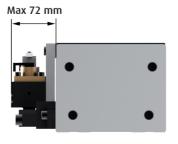
Motoranbau indirekt mittels Zahnriemengetriebe

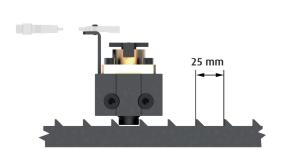
Aluminium Motoranbau mit Zahnriemen, Riemenscheiben, Spannsatz und Motorflansch, dieser nach Motortyp angepasst. Auf Anfrage werden auch Sonderteile realisiert.

Baugrösse	Α	В	С	Zahn-	D min/max	Unter-
budgiosse	[min/max]	[mm]		riemen	Ø [mm]	setzung
MV070	155 - 200	70	45	10AT5	5 - 12	
MV090	230 - 330	95	55	10AT5	5 - 14	1:1/1:2/2:1
MV/MH 130	240 - 350	95	55	16AT5	8 - 22	, ,
MV/MH 160	250 - 420	110	55	16AT5	8 - 24	

Sicherheitssysteme

Senkrecht-arbeitende Linearmodule mit Sicherheitssystem aus Zahnstange mit Zahnbreite von 25mm, Blockiersystem, Zahnstangenhalter.





				Q (Liter/Zyklu	s)
Тур	Bau- grösse	Bestell- system	BAR 4	BAR 6	BAR 8
	130	250_A01			
MV/MH		250_A02	0,37 · 10 ⁻⁹	0,52 · 10-9	0,67 · 10-9
	160	250_A03			

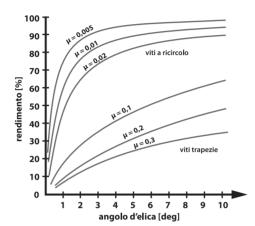
BERECHNUNGSGRUNDLAGEN

Wirkungsgrad

Die Leistung einer Spindel hängt von mehreren Parametern ab, wie beispielsweise die Kontaktflächen, die Drehzahl der Mutter, die Arbeitsumgebung und andere.

Fall 1:

Von Drehmoment auf Linearbewegung


$$\eta = \frac{\tan(\alpha)}{\tan(\alpha + \varrho)} \ [\%]$$

Fall 2:

Von Axialkraft auf Drehbewegung

$$\eta' = \frac{\tan{(\alpha - \varrho)}}{\tan{\alpha}} \ [\%]$$

$$\tan \alpha = \frac{p}{d_o \cdot \pi}$$

- n = Wirkungsgrad [%]
- η' = korrigierter Wirkungsgrad [%]
- p = Steigung [mm]
- d_o = Spindel Kerndurchmesser [mm]
- ϱ = Reibungswinkel [°]
- μ = Reibungsgrad

Antriebs-/Abtriebsmoment

Antriebsmoment

Fall 1: Von Drehmoment auf Linearbewegung

$$M_a = \frac{F_a \cdot p}{2000 \cdot \pi \cdot \eta} [Nm]$$

Abtriebsmoment

Fall 2: Von Axialkraft auf Drehbewegung

$$M_e = \frac{F_{a \cdot p \cdot \eta'}}{2000 \cdot \pi} [Nm]$$

Antriebsleistuna

$$P = \frac{M_{a \cdot n}}{9550} \ [kW]$$

M_ = Antriebsmoment [Nm]

M_a = Abtriebsmoment [Nm]

F = Axialkraft [N]

p = Steigung [mm]

= Wirkungsgrad [%]

η' = korrigierter Wirkungsgrad [%]

n = Drehzahl [min⁻¹]

P = Antriebsleistung [kW]

Statische und dynamische Tragzahl

Die statische Tragzahl C. (N), ist die axiale Belastung auf Gewindespindel in statischen Bedingungen, dass zu einer dauerhaften Verformung der Kugeln und des Gewindes, die etwa 0,0001 des Durchmessers entspricht.

Die dynamische Tragzahl C, (N), ist die axiale Belastung, bei der die Überlebenswahrscheinlichkeit eines Kugel- oder Rollengewindetriebs nach einer Million Umdrehungen, 90 % beträgt.

Nominelle Lebensdauer

Die nominelle Lebensdauer ist die Gesamtzahl Umdrehungen dass 90% der Spindeln einer gleichen Baugrösse unter gleichen Betriebsbedingungen erreicht, ohne dass Anzeichen an Materialermüdung erreicht werden.

Nominelle Lebensdauer in Umdrehungen Nominelle Lebensdauer in Stunden

$$L_{10} = \left(\frac{C_a}{F_m}\right)^3 \cdot 10^6 \ [R]$$

$$L_h = \frac{L_{10}}{n_{m \cdot 60}}$$
 [h]

 L_{10} = Lebensdauer in Umdrehungen [U]

C = dynamische Tragzahl [N]

= **ä**quivalente axiale Belastung [N] = Lebensdauer in Stunden [h]

n... = mittlere Drehzahl [min⁻¹]

Da eine Gewindespindel in zwei axialen Richtungen belastet werden kann, muss der Wert der dynamischen äguivalente axialen Belastung Fm in jeder Richtung kalkuliert werden. Der größere Wert wird dann für die Formel del Lebendsauerkalkulation herangezogen.

$$F_m = \sqrt[3]{F_1^3 \, n_I \frac{q_1}{100} + F_2^3 \, n_2 \frac{q_2}{100} + F_3^3 \, n_3 \frac{q_3}{100} + \dots} \ [N]$$

$$n_m = n_1 \frac{q_1}{100} + n_2 \frac{q_2}{100} + n_3 \frac{q_3}{100} + \dots \text{ [min}^{-1]}$$

F_ = dynamische äquivalenteaxiale Belastung [N]

 $F_1...F_n = Axiallasten pro Zeitanteil <math>q_1...q_n$ [N]

 $q_1...q_n$ = Anteile der Belastungsdauer [%]

100 = Σq (Summe aller Zeitanteile q,...q.) [%] **C** = dynamische Tragzahl [N]

K_D = charakteristische Konstante, in Abhängigkeit des

 $n_1...n_n$ = Drehzahl pro Zeitanteil [min⁻¹]

Kritische Drehzahl der Spindel

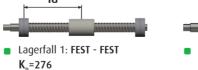
Die Kritische Drehzahl der Spindel, die auch durch die maximale Rotationsgeschwindigkeit der Mutter beschränkt ist, hängt hauptsächlich vom Spindel-Kerndurchmesser, von der Länge der Spindel und vom Lagerfall ab. Der Wert der Kritischen Drehzahl namm, sollte ausreichend weit von der Eigenfequenz der Spindel entfernt sein.

Kritische Drehzahl der Spindel

$$n_{cr} = K_D \cdot 10^6 \cdot \frac{d_2}{l_a^2} \text{ [min}^{-1}\text{]}$$

Zulässige Drehzahl der Spindel

 $n_{\text{max}} = n_{cr} \cdot S_n \text{ [min}^{-1]}$


d_a Lagerfalls = Kerndurchmesser [mm]

= kraftübertragende Spindellänge [mm]

→ siehe unten

n_{max} = zulässige Drehzahl [min-1] n_{cr} = kritische Drehzahl Spindel

S = Sicherheitsfaktor (von 0.5...0.8)

Drehzahlkennwert der Mutter

Der Drehzahlkennwert der Mutter hängt vom Spindeldurchmesser ab

$$n_{\text{max}} = \frac{\text{Max. Drehzahl der Mutter}}{d_1} \text{ [min}^{-1}]$$

d₁ = Spindeldurchmesser [mm]

Maximale Drehzahlkennwert der Mutter

Einzelgang-Kugelrückführung

Rohr-Kugelrückführung

Endkappen-Kugelrückführung

80.000

BERECHNUNGSGRUNDLAGEN

Zulässige Maximalbelastung für KGT

$$F_{amm} = \frac{C_o}{f_s} [N]$$

F_{amm} = zulässige Maximalbelastung [N] C_O = statische Tragzahl [N]

 f_S = Sicherheitsfaktor

1- Normalbetrieb: 1...2

2- Stress-Belastungeni: 2...3

Zulässige Maximalbelastung für POM-C Mutter

$$F_{amm} = \mathbf{C}_o \cdot f_c \quad [N]$$

Umfangs- geschwindigkeit	Lastfaktor
V _P [m/min]	f c [-]
5	0,95
10	0,75
20	0,45
30	0,37
40	0,12
50	0,08

F_{amm} = zulässige Maximalbelastung [N]

C_O = statische Tragzahl [N]

f_C = Sicherheitsfaktor abhängig von

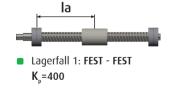
der Umfangsgeschwindigkeit

(siehe Tabelle)

Zulässige Knickkraft

Spindeln unter einer Druckbelastung, können sich seitlich verformen. Der Wert der Belastung darf nicht den Wert der zulässigen Knickkraft überschreiten.

$$F_p = \frac{K_p}{S_k} \cdot \frac{d_2^4}{l_F^2} \cdot 10^3 [N]$$


 $\mathbf{K}_{\mathbf{p}}$ = charakteristische Konstante, in Abhängigkeit des Lagerfalls

→ siehe unten


d,= Kerndurchmesser [mm]

I_r = kraftübertragende Spindellänge [m]

 S_{k} = Sicherheitsfaktor (2...4)

Lagerfall 4: FEST- FREI K₀=25

Vorspannung

In allen Movitec Linearsysteme werden Mutter mit einem Standard-Axialspiel von <0,03 mm geliefert. Es ist möglich auch ein reduziertes Axialspiel von <0,01 mm zu liefern durch den Austausch der Kugeln. Für Spindeln in ISO 5 ist es möglich auch Nullspiel zu haben.

Schmierung

Die richtige Schmierung ist sehr wichtig für die Leistung und die Lebensdauer eines Linearsystems. Alle Linearsysteme Movitec werden geschmiert geliefert. Für bestimmte Branchen, beispielsweise Reinraum , werden Linearsysteme ohne Schmierung geliefert.

Stastischer Sicherheitsfaktor

Der statische Sicherheitsfaktor \mathbf{f}_s gibt das Verhältnis von statischer Tragzahl \mathbf{C}_o zu ermittelter Belastung \mathbf{F}_o oder auch das Verhältnis von zulässiger Momentenbelastung \mathbf{M}_o zu statischer Momentenbelastung \mathbf{M}_{stat} an:

$$f_{\rm S} = (f_H \cdot f_T \cdot f_{\rm C}) \cdot \frac{{\rm C}_O}{F_O}$$

oder

$$f_{\rm S} = (f_H \cdot f_T \cdot f_{\rm C}) \cdot \frac{M_O}{M_{stat}}$$

f_c = statischer Sicherheitsfaktor

f... = Härtefaktor = 1

 f_{\perp} = Temperaturfaktor = 1

 $f_c = Kontaktfaktor = 0.81$

 C_0 = statische Tragzahl [N]

 F_0 = ermittelte Belastung [N]

 $\rm M_{\rm o}$ = zulässige Momentenbelastung [Nm]

 M_{stat} = statische Momentenbelastung [Nm]

Standardwerte für statischen Sicherheitsfaktor

Belastung	Belastungsbedingungen	Minimalwerte für f_s
statisch	normale Stösse und Schwingungen starke Stösse und Schwingungen	1 1,3 2 3
dynamisch	normale Stösse und Schwingungen starke Stösse und Schwingungen	1 1,5 2,5 5

Dynamische Traqzahl

Die Berechnung der dynamischen Tragzahl ist durch die **ISO 14728-1** genau definiert und hat auf Basis 100 km zu erfolgen. Nach Teil 1 der gleichen Norm, können die Berechnungen auch auf einer Referenzstrecke von 50 km erfolgen mit der Anwendung von einem Umrechnungsfaktor von 1.26 um einen korrekten Vergleich zwischen den beiden Nennlastwerten **C50 = 1.26 C** 100 zu erhalten. Alle Daten in diesem Katalog wurden auf Basis 100 km gerechnet.

Nominelle Lebensdauer

Die Ermüdungslebensdauer **L** ist der Abstand, den ein Bauteil erreichen kann, bevor die ersten Anzeichen einer Ermüdung auf den Rollflächen oder auf den Wälzkörpern auftreten. Bei Linearführungen bezieht sich die Ermüdungsdauer auf die zurückgelegte Strecke, während sie sich bei den Kugelgewindetrieben die Anzahl der Umdrehungen bezieht.

Lebensdauer für Kugelführungen:

$$L = \left(\frac{f_H \cdot f_T \cdot f_C}{f_W} \cdot \frac{C}{F}\right)^3 \cdot 100 [km]$$

ode

$$L = \left(\frac{f_H \cdot f_T \cdot f_C}{f_W} \cdot \frac{M}{M_{din}}\right)^3 \cdot 100 \, [km]$$

L = nominelle Lebensdauer [km]

 f_H = Härtefaktor

 f_{τ} = Temperaturfaktor

f_c = Kontaktfaktor

f_w = Belastungsfaktor

C = dynamische Tragzahl [N]

F = mittlere dynamische Belastung [N]

M = mittlere Momentenbelastung [Nm]

M_{din} = mittlere dyn.Momentenbelastung [Nm]

BERECHNUNGSGRUNDLAGEN

Lebensdauer für Rollenführungen:

$$L = \left(\frac{f_H \cdot f_T \cdot f_C}{f_W} \cdot \frac{C}{F}\right)^{\frac{10}{3}} \cdot 100 [km]$$

oder
$$L = \left(\frac{f_H \cdot f_T \cdot f_C}{f_W} \cdot \frac{M}{M_{din}}\right)^{\frac{10}{3}} \cdot 100 [km]$$

Belastungsbedingungen	Verfahrgeschwindigkeit v	Minimalwerte für fw
Ohne Stösse und Schwingungen Leichte Stösse und Schwingungen Starke Stösse und Schwingungen	Sehr tief, v < 15 m/min Tief, 15 < v < 60 m/min Mittel, 60 < v < 120 m/min Hoch, v > 120 m/min	1 1,2 1,2 1,5 1,5 2,0 2,0 3,5

Lebensdauer in Stunden

Lebensdauer für Linearfürungen

...bei konstanter Verfahrgeschwindigkeit: ...bei variabler Verfahrgeschwindigkeit: s = Hub [m]

$$L_h = \frac{L \cdot 10^3}{2 \cdot s \cdot Q \cdot 60} [h] \qquad L_h = \frac{L \cdot 10^3}{v_m \cdot 60} [h]$$

L_h = Lebensdauer in Stunden [h]

L = nominelle Lebensdauer [km]

Q = Arbeitszyklen pro Minute [min⁻¹]

v_m= mittlere Verfahrgeschwindigkeit [m/min]

Werkstoffe

	Werkstoffe	Merkmale
	Aluminium extrudiert und anodisiert 6060 T6 6063 T6 6082	 Langzeitdauer Die Größe der Präzisionskomponenten bleibt konstant Verbesserte Härte der Aluminiumoberfläche Korrosionsbeständigkeit
Linearsysteme	INOX Stahl AISI 302/304	 Korrosionsbeständigkeit Mit hohen hygienischen Koeffizienten Leicht bearbeitbar und schweißbar
	Stahl C45	 Geeignet für hohe Belastungen, Stöße und vor allem unter Belastung Bester Kompromiss zwischen mechanischer Festigkeit und Zähigkeit

Abdeckungen

	Тур	Merkmale		
Linearsysteme	PVC Faltenbalg	Vielseitig Nicht verformbar Garantiert Sicherheit für Handling		
	Metallabdeckung	 Gewährleistung gegen Eindringen von Staub und Spänen Wo Faltenbalge keine ausreichende Sicherheitsgarantie bieten Geeignet für Schweiss- und Klebeoperationen 		
	Faltenbalg mit Stahllamellen	1. Größerer Schutz gegen Späne und Staubeindringung		

Technische Daten der Kugelspindeln

	ISO 9 (0,10/7 mm)	ISO 7 (0,052/300 mm)	ISO 5 (0,023/300 mm)	ISO 3 (0,012/300 mm)
	[mm]	[mm]	[mm]	[mm]
Standard Axialspiel der Mutter	0,1	0,03	0,015	0,01
Positioniergenauigkeit	0,05	0,026	± 0,013	± 0,006
Wiederholgenauigkeit	< 0,05	< 0,030	< 0,015	< 0,005

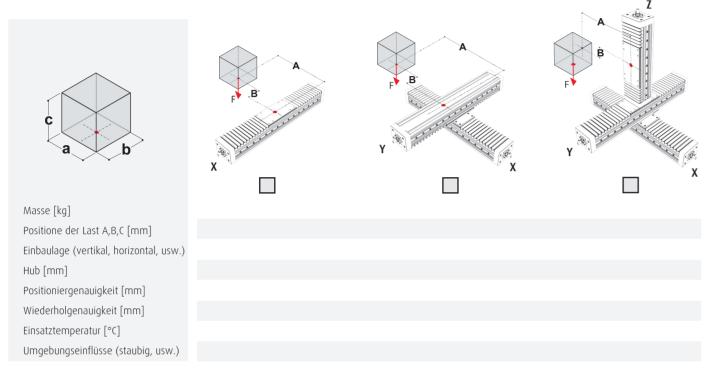
Reduziertes Axialspiel oder Vorspannung für Einzelmutter möglich:

1. ISO 7

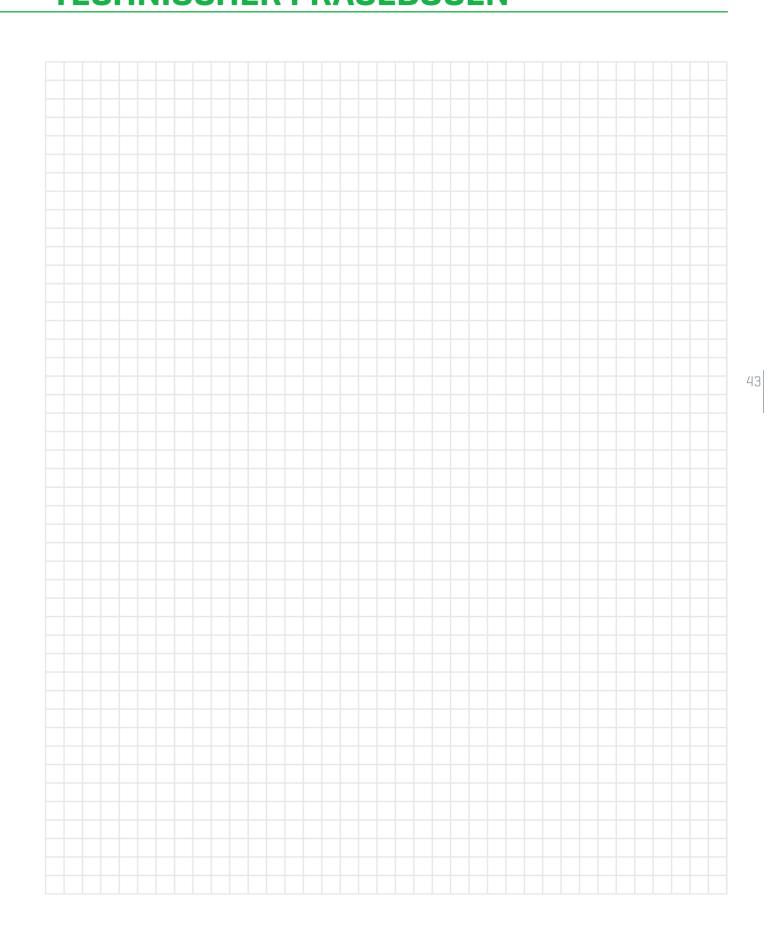
<0.020 mm <0.010 mm

2. ISO 5

<0.010 mm Vorspannung auf 3 % des C_a Wertes


Vorspannung auf 3 % des C_a Wertes auf maximale Spindellänge von 1000 mm

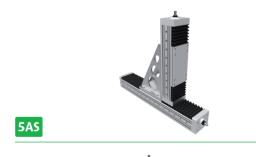
"Bi-Rail" Linearmodule TECHNISCHER FRAGEBOGEN


Technische Daten

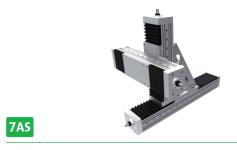
Arbeitszyklus

			Arbeitszyklus						
Fase	Belastung	(N)	Zeitanteil	(s)	Taktzeit	(m)	Beschleunigung	(m/s^2)	Zyklus-Beschreibung
1	F1		q1		s1		a1		
2	F2		q2		s2		a2		
3	F3		q3		s3		a3		
4	F4		q4		s4		a4		
N	Fn		qn		Sn		an		
Gewünschte Lebensdauer									
In Stunden (h)									
In Um	ndrehungen	[R]							

"Bi-Rail" Linearmodule TECHNISCHER FRAGEBOGEN


"Bi-Rail" Linearmodule MONTAGEBEISPIELE

"Bi-Rail" Linearmodule MONTAGEBEISPIELE



3SL

"Bi-Rail" Linearmodule **SONDERLÖSUNGEN**

Lineartisch LVP50, doppel Schlitten, Spindel rechts/links, eloxiert schwarz

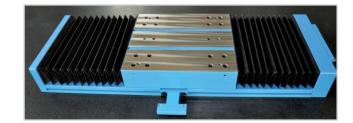

Lineartisch TVP100 - Edelstahl

Lineartisch TVP200 - -Aluminium mit RAL Farbe

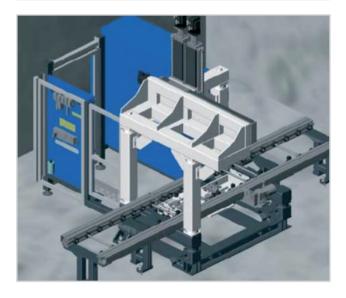
X-Y System TVP150 - ALuminium mit RAL Farbe

X – Y System mit Lineartische TVP 200 TVP 200 und Rundtisch

X-Y-Z System mit Faltenbalgabdeckung und Edelstahllamellen


X-Y-Z Pantograph System MCP70 mit Motoren und Energiekette

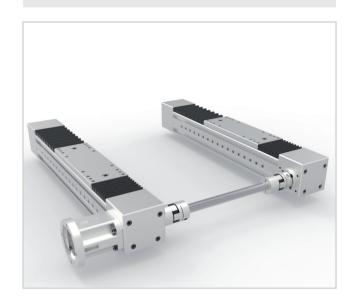
X-Y-Z System mit TVP150, TVP200 und Rundtisch

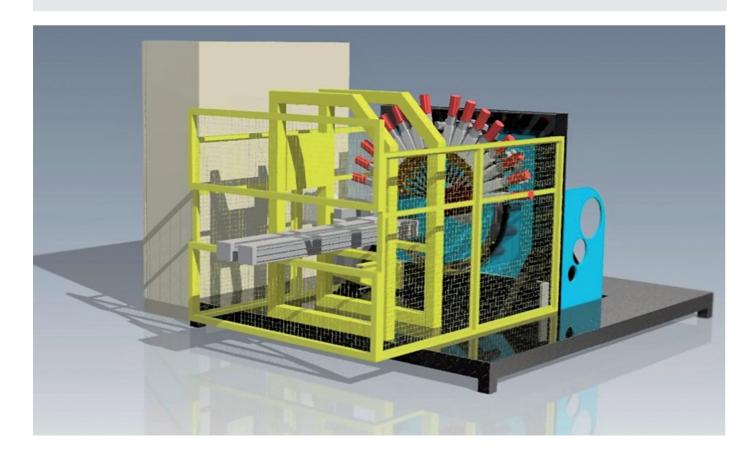


Lineartisch TVP250 - Stahl mit RAL Farbe

"Bi-Rail" Linearmodule SONDERLÖSUNGEN

Modulare Montageinsel


12-Achsen-Maschine komplett


Laser Schneidmaschine

Synkronisierte Linearachsen

Industrie-Filter Maschine

Bi-Rail Linearmodul Hub 9500mm, mit Zahnstange

7-Achsige Bohr- und Fräsmaschine

48

"Bi-Rail" Linearmodule UNSERE PRODUKTE

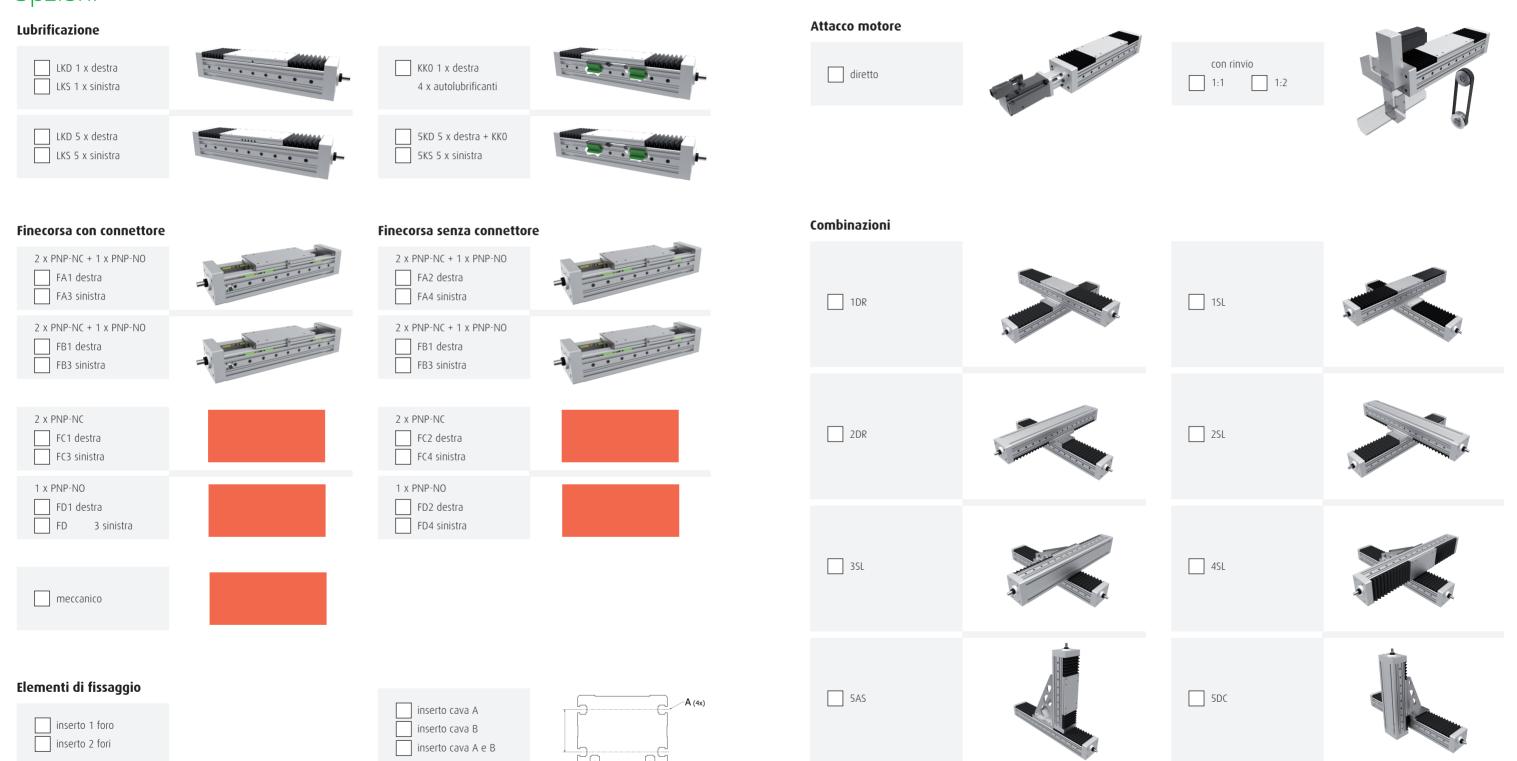
TV Baureihe: Lineartische, elektromechanisch

LV Baureihe: Mikro-Lineartisch

TP Baureihe: Lineartische, pneumatisch

CP Baureihe: Kompaktachsen

MC Baureihe: Bi-Rail Linearmodule, Zahnriemen



Moduli Lineari "Bi-Rail"

MODULO RICHIESTA PREVENTIVO

Opzioni

Moduli Lineari "Bi-Rail" MODULO RICHIESTA PREVENTIVO

Opzioni

Combinazioni

